Biological Prediction

We know the brain has an expectation
of what it will sense at a given moment. How?

01 Structure of the Neocortex

Agenda

Topics Covered
02 Learning Criteria

03 Dendritic Predictions

04 Applications

Basis

https://www.frontiersin.org/article/10.3389/fncir.2016.00023

The Neocortex

- 'Higher order' intelligent thinking, planning, prediction, consciousness
- Composed of ~150,000 cortical columns
- Thousands of neurons each
- Six layers

A Cortical Column

- "Mini-columns are small groups of pyramidal neurons that exist within one layer of each cortical column. The input layer of each cortical column are arranged in mini-columns. In our simulations, there are typically 150-250 mini-columns per cortical column, with 16 cells per mini-column."
- Hawkins' Claim: if the cortex has the same structure everywhere and learns, then there exists a general learning algorithm from this structure

A Neuron

- Each pyramidal neuron has thousands of inputs from other neurons on synapses
- Synapses line each dendrite
- Input on dendrites further away is not enough to cause an action potential

- Input to proximal dendrites largely responsible for action potentials

Learning

Predictive Coding Model:
Input $\underset{\sim}{\text { Prediction }}$ Update less when you correctly predict the next input, update more when it was unexpected

Next Input

Adjust Model

Learning Criteria and Constraints

1) Local Learning Rules
2) Continuous Learning
(the environment changes)
3) Contextual Info and Prior Experience
4) Multiple Simultaneous Predictions
5) Robust to Noise

What biological mechanisms meet these?

Predictions Thought Experiment

You hear a key turn in the door to your house, and you generally expect your roommate to get back from classes soon
Due to your prior experience with the sound of the key that have been followed by the door opening, you unconsciously anticipate it will open

Either

1) The door does not open, you become conscious of the unmet prediction

OR
2) The door opens and you may not have even looked up

Predictions Thought Experiment

In no case can you tell your brain to stop receiving the sensory input of hearing the door open or not, but in different scenarios we become conscious of it or not.

Dendritic Predictions

Key Idea

Predictions are encoded when an actively firing neuron connects to distal dendrites of another neuron that is predicted to come next.

1) When I hear the key turn, first, the minicolumn(s) encoding the sound of the key turning fire.
2) They also connect to basal dendrites of neurons that encode the sound of the door opening
3) The basal dendritic spikes do not cause these neurons to fire (otherwise you would hallucinate the sound of the door opening)
4) Instead, the basal dendritic spikes depolarize the neurons expecting the sound of the door opening

This is a prediction

Dendritic Updates

Key Idea

When the next input is received, if it sends signals to the expected neurons, they will fire faster than unpredicted possibilities, causing local inhibition

1) The minicolumn(s) representing the door opening receive the excitatory signal as I hear the door opening
2) The neurons of this column that were depolarized by the noise of the key fire first and faster
3) This inhibits the other neurons of the column from firing that weren't primed by the noise of the key
4) The prediction was met, and fewer neurons fired because of it (maintaining sparsity)

Dendritic Updates

Key Idea
Otherwise, if the next input was unexpected, the primed neurons do not fire faster, and all the neurons encoding the unexpected input fire

1) The excitatory input is directed to neurons that were not depolarized by a prior input
2) They all fire at the same rate and there is no local inhibition
3) The prediction was not met and more neurons fired
 because of it

Sparsity and Combinatorics

Key Idea
It is important that only a few neurons fire at once in order to represent a given input. If a dense amount of neurons fire, then this pattern can be easily confused with other patterns.

If I have 1,000 Skittles total and I can arrange them in different locational patterns, but every time I must arrange 999 of the Skittles, then I can make fewer patterns than if I could change one Skittle at a time to make a different pattern.

Applications

- HTM Network

The group who wrote this paper, Numenta, simulated this model using neural networks. It learned sequences of characters well and was robust to perturbations of the data.

Could we add a depolarization mechanism to our networks?

Could we add an inhibitory

 mechanism to encourage sparse representation of seen patterns?- Other thoughts?

And now, my dogs

Bonus Slides!!!

Adaptive Resonance Theory

Top down expectations are compared to bottom up inputs.

Matches cause excitatory cycles.

These cycles are called resonant states

